基于 APACHE Ⅱ评分的脓毒症患者 28d 死亡风险的列线图预测模型构建与验证
CSTR:
作者:
作者单位:

商丘市第一人民院

作者简介:

通讯作者:

中图分类号:

基金项目:

商丘市科技攻关项目(项目编号: 2025010)


Construction and Validation of a Prognostic Nomogram Model for 28d Mortality Risk in Patients with Sepsis Based on APACHE Ⅱ Scores
Author:
Affiliation:

Shangqiu First People''s Hospital

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 构建基于急性生理学与慢性健康状况评分Ⅱ( Acute Physiology and Chronic Health Evaluation Ⅱ,APACHE Ⅱ)评分的脓毒症患者 28d 死亡风险列线图预测模型,并验证其预测性能,为临床精准评估和风险分层提供辅助工具。 方法 回顾性纳入 2023 年 1 月至 2025 年 6 月在商丘市第一人民医院重症监护室确诊为脓毒症的 186 例患者,收集患者APACHE Ⅱ评分相关指标、乳酸水平、基础疾病、机械通气等临床资料,记录 28d 生存结局。采用多因素 Logistic 回归分析筛选独立危险因素,并构建列线图模型,通过 C 指数、校准曲线与决策曲线分析( Decision Curve Analysis, DCA)评估模型的判别力、校准度与临床效用,并行内部 Bootstrap 验证。根据入组时间将患者分为建模队列( 2023 年 1 月至 2024 年 12 月,n=138)和时间外推验证队列( 2025 年 1 月至 2025 年 6 月, n=48),进一步验证模型的稳健性。 结果 多因素 Logistic 回归分析显示, APACHE Ⅱ评分、乳酸水平、机械通气及合并糖尿病 / 心衰为影响脓毒症患者 28d 死亡的独立因素(P<0.05)。构建的列线图模型 C 指数为 0.872,校准曲线拟合良好, DCA 显示具有较高临床净收益。内部验证 C 指数为 0.860,提示模型稳定性良好。时间外推验证队列中, C 指数为 0.852。 结论 基于 APACHE II 评分的列线图模型可准确预测脓毒症患者28d 死亡风险,具有良好的判别能力、校准一致性和临床实用性,适用于临床早期风险评估与干预决策。

    Abstract:

    Objective To construct a 28d mortality risk prediction model for sepsis patients based on the Acute Physiology and Chronic Health Evaluation Ⅱ (APACHE II) score, validate its predictive performance, and provide an auxiliary tool for clinical precision assessment and risk stratification. Methods A retrospective study was conducted on 186 patients diagnosed with sepsis in Intensive Care Unit, Shangqiu First People’s Hospital from January 2023 to June 2025. APACHE Ⅱ score related indicators, lactic acid levels, underlying diseases, mechanical ventilation, and other clinical data were collected, and 28d survival outcomes were recorded. Multivariate Logistic regression analysis was used to screen for independent risk factors, and a nomogram model was constructed. The discriminant power, calibration degree, and clinical utility of the model were evaluated through C-index, calibration curve, and decision curve analysis (DCA), and internal Bootstrap validation was conducted. Temporal validation was conducted by dividing patients into a derivation cohort (from January 2023 to December 2024, n=138) and a temporal validation cohort (from January 2025 to June 2025, n=48). Results Multivariate Logistic regression analysis showed that APACHE II score, lactic acid level, mechanical ventilation and diabetes/heart failure were independent factors affecting 28d mortality in patients with sepsis (P<0.05). The constructed nomogram model had a C-index of 0.872, and the calibration curve fits well. DCA showed a high clinical net benefit. The internal validation C-index was 0.860, indicating good model stability. In the temporal validation cohort, the model maintained good discrimination with the C-index of 0.852. Conclusion The nomogram model based on APACHE Ⅱ score can accurately predict the 28d mortality risk of sepsis patients, with good discriminative ability, calibration consistency, and clinical practicality, and is suitable for early clinical risk assessment and intervention decision-making.

    参考文献
    相似文献
    引证文献
引用本文

赵莉.基于 APACHE Ⅱ评分的脓毒症患者 28d 死亡风险的列线图预测模型构建与验证[J].生物医学工程学进展,2025,(6):837-842

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-26
  • 最后修改日期:2025-09-30
  • 录用日期:2025-10-03
  • 在线发布日期: 2026-01-16
  • 出版日期:
文章二维码