子宫肌瘤术后复发风险因素的预测模型
CSTR:
作者:
作者单位:

蚌埠医学科大学第一附属医院

作者简介:

通讯作者:

中图分类号:

基金项目:


Predictive Model of Risk Factors for Postoperative Recurrence of Uterine Fibroids
Author:
Affiliation:

the first affiliated hospital of bengbu medical unversity

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 通过预测模型评估行子宫肌瘤剥除术后复发的风险,探讨子宫肌瘤术后复发的相关危险因素。 方法 回顾性分析 2022 年 1 月至 2022 年 6 月蚌埠医科大学第一附属医院收治的 208 例行子宫肌瘤剥除术患者的病例资料,包括患者年龄、孕次、初潮年龄、身体质量指数(BMI)、子宫肌瘤类型、子宫肌瘤数目、子宫肌瘤直径、手术方式、组织病理学类型等,根据有无复发分为复发组(n=59)和未复发组(n=149)。统计子宫肌瘤术后复发率,通过多因素 Logistic 回归模型分析子宫肌瘤术后复发的因素,使用 R 语言软件绘制子宫肌瘤术后复发的风险列线图模型,应用受试者工作特征(ROC)曲线对风险列线图模型预测效能进行检验,运用 Calibration 校准曲线进行验证。 结果 单因素分析显示,复发组在子宫肌瘤类型、子宫肌瘤数目、子宫肌瘤直径、手术方式等方面与未复发组比较,差异有统计学意义(P<0.05)。 Logistic 回归分析显示,子宫肌瘤类型、子宫肌瘤数目、子宫肌瘤直径是子宫肌瘤术后复发的影响因素(P<0.05)。将子宫肌瘤类型、子宫肌瘤数目、子宫肌瘤直径作为参数构建列线图预测模型, ROC 曲线下面积、灵敏度、特异度分别为 0.8026、 0.5935、 0.8723,表明该模型预测效能良好。 Calibration 校准曲线验证预测概率和实际概率接近,模型校准度良好。 结论 子宫肌瘤类型、子宫肌瘤数目、子宫肌瘤直径是影响子宫肌瘤术后复发的危险因素,列线图模型预测效能良好。

    Abstract:

    Objective This study aims to develop a predictive model for postoperative recurrence risk and identify significant risk factors following myomectomy in patients with uterine fibroids. Methods A retrospective analysis was conducted on 208 patients who underwent myomectomy at the First Affiliated Hospital of Bengbu Medical University between January and June 2022. Clinical parameters including age, parity, menarche age, body mass index (BMI), fibroid characteristics (type, number, diameter), surgical approach, and histopathological findings were evaluated. The patients were divided into the recurrence (n=59) and non-recurrence (n=149) groups according to whether there was recurrence after surgery. The postoperative recurrence rate was calculated. Multivariate Logistic regression analysis was performed to identify independent risk factors, and a nomogram model was developed using R software. Model performance was assessed using receiver operating characteristic (ROC) curve analysis and Calibration curve. Results Univariate analysis indicated significant differences between the recurrence and non-recurrence groups in fibroid type, number, diameter, and surgical approach (P<0.05). Multivariate Logistic analysis confirmed that fibroid type, multiple fibroids, and larger fibroid diameter were independent risk factors for recurrence (P<0.05). The nomogram model incorporating these factors demonstrated good predictive performance, with an area under the ROC curve (AUC) of 0.8026, sensitivity of 0.5935, and specificity of 0.8723. The Calibration curve confirmed good agreement between predicted and actual probabilities, indicating excellent model calibration. Conclusion Fibroid type, number, and diameter are significant risk factors for postoperative recurrence. The developed nomogram model shows satisfactory predictive performance for clinical application.

    参考文献
    相似文献
    引证文献
引用本文

胡家琳.子宫肌瘤术后复发风险因素的预测模型[J].生物医学工程学进展,2025,46(4):429-434

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-14
  • 最后修改日期:2025-05-31
  • 录用日期:2025-06-01
  • 在线发布日期: 2025-09-16
  • 出版日期:
文章二维码