脑出血患者术后认知功能障碍的相关影响因素分析及风险预测模型的构建
CSTR:
作者:
作者单位:

郑州第六人民医院

作者简介:

通讯作者:

中图分类号:

基金项目:


Analysis of Related Factors for Postoperative Cognitive Impairment in Patients with Intracerebral Hemorrhage and Construction of a Risk Prediction Model
Author:
Affiliation:

General Intensive Care Unit, Zhengzhou Sixth People''s Hospital

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨脑出血( ICH)患者术后发生认知功能障碍( CI)的相关因素并构建风险预测模型。 方法 选取2022 年 11 月至 2024 年 11 月郑州第六人民医院综合重症监护病房收治的 ICH 患者 72 例,根据是否发生 CI 分为 CI 组( 29 例)与非 CI 组( 43 例),比较两组患者的临床资料,采用 Logistic 回归建立 ICH 患者术后发生 CI 的预测模型;采用 ROC 分析评估模型的预测效能。 结果 与非 CI 组比较, CI 组病灶位于脑叶、多发病灶的比例更高,颅内血肿量更大,术中 MAP 更低,入住 ICU 患者更多,继发癫痫比例更高,出院 NIHSS 评分更高( P<0.05)。 Logistc 回归分析结果显示,病灶部位( OR=2.081,95%CI: 3.824 ~ 9.532)、颅内血肿量( OR=1.325, 95%CI: 1.121 ~ 5.718)、继发癫痫( OR=1.528, 95%CI: 1.124 ~ 4.271)、出院 NIHSS 评分( OR=2.144, 95%CI: 1.272 ~ 7.262)是 ICH 患者术后发生 CI 的主要影响因素( P<0.05)。根据 Logistic回归分析结果构建 ICH 患者术后发生 CI 风险预测模型: Logit(P) = 1.325 +1.131× 病灶位于脑叶 +0.842× 颅内血肿量+1.252×继发癫痫 +1.582×出院NIHSS评分。 ROC分析显示, ICH患者术后发生CI风险预测模型的AUC值为0.794( 95%CI:0.682 ~ 0.907, P<0.05),敏感度为 82.72%,特异度为 77.86%。 结论 病灶部位、颅内血肿量、继发癫痫、出院 NIHSS评分是 ICH 患者术后发生 CI 的主要影响因素,据此构建多因素预测模型可评估 ICH 患者术后 CI 风险,指导后续治疗。

    Abstract:

    Objective To investigate the factors related to postoperative cognitive impairment (CI) in patients with intracerebral hemorrhage (ICH) and construct a risk prediction model. Methods A total of 72 patients with ICH in General Intensive Care Unit, Zhengzhou Sixth People’s Hospital, Zhengzhou, from November 2022 to November 2024 were selected and divided into CI group (29 cases) and non-CI group (43 cases) according to whether CI occurred. The clinical data of the two groups were compared, and the prediction model of postoperative CI in ICH patients was established by Logistic regression. ROC analysis was used to evaluate the predictive efficiency of the model. Results Compared with the non-CI group, the CI group had a higher proportion of lobular lesions and multiple lesions, a larger amount of intracranial hematoma, lower intraoperative MAP, more patients admitted to ICU, a higher proportion of secondary epilepsy, and a higher discharge NIHSS score (P<0.05). Logistc regression analysis showed that lesion location (OR=2.081, 95%CI: 3.824~9.532), intracranial hematoma volume (OR=1.325, 95%CI: 1.121~5.718), secondary epilepsy (OR=1.528, 95%CI: 1.124~4.271) and NIHSS score (OR=2.144, 95%CI: 1.272~7.262) were the main influencing factors for postoperative CI in ICH patients (P<0.05). The CI risk prediction model for ICH patients after surgery was constructed according to the Logistic regression analysis results: Logit(P)=1.325+1.131×lobular location+0.842×intracranial hematoma+1.252×secondary epilepsy+1.582×discharge NIHSS score. ROC analysis showed that the AUC value of the CI risk prediction model for ICH patients was 0.794 (95%CI: 0.682~0.907, P<0.05), with a sensitivity of 82.72% and a specificity of 77.86%. Conclusion Lesion location, intracranial hematoma amount, continued epilepsy, and discharge NIHSS score are the main influencing factors for postoperative CI in ICH patients. Therefore, a multi-factor prediction model can be built to assess the risk of CI in ICH patients and guide follow-up treatment.

    参考文献
    相似文献
    引证文献
引用本文

杨小娟.脑出血患者术后认知功能障碍的相关影响因素分析及风险预测模型的构建[J].生物医学工程学进展,2025,46(4):564-569

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-07
  • 最后修改日期:2025-04-14
  • 录用日期:2025-04-16
  • 在线发布日期: 2025-09-16
  • 出版日期:
文章二维码