心力衰竭患者自我护理能力现状及影响因素预测模型的构建与验证
CSTR:
作者:
作者单位:

郑州大学附属郑州中心医院

作者简介:

通讯作者:

中图分类号:

基金项目:


Current Status and Influencing Factors of Self-Care Ability in Patients with Heart Failure: Construction and Validation of a Predictive Model
Author:
Affiliation:

Zhengzhou University Affiliated Zhengzhou Central Hospital

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨心力衰竭( Heart Failure, HF)患者自我护理能力的现状,构建并验证影响因素的预测模型,为精准护理干预提供理论依据。 方法 选取 2024 年 1 月至 2025 年 1 月郑州大学附属郑州中心医院收治的 80 例心力衰竭患者,采集人口学、临床及社会支持数据,使用欧洲心力衰竭自我护理行为量表( EHFScB-9)评估患者的自我护理能力,使用多因素 Logistic 回归分析自我护理能力不足的影响因素,构建并验证影响因素预测模型。 结果 多因素 Logistic 回归分析显示,家庭居住人数< 3 人( OR=2.568)、睡眠呼吸暂停( OR=2.077)、过去 12 个月住院次数≥ 2 次( OR=2.568)、对疾病消极感受( OR=2.440)、左心室射血分数( Left Ventricular Ejection Fraction, LVEF)降低( OR=0.151)和每日用药种类≥ 5 种( OR=9.152)是自我护理能力不足的独立危险因素。构建影响因素预测模型,并创建公式: P=1/{1+e[0.943×(家庭居住人数< 3) +0.731×(睡 眠呼吸暂停) +0.675×(过去 12 个月住院次数≥ 2 次) +0.892×(对疾病消极感受) -1.929×( LVEF 降低) +2.214×(每日用药种类≥ 5 种) -8.461]}。模型预测自我护理能力不足的曲线下面积( Area Under the Curve, AUC)为 0.827,敏感性和特异性分别为 85.74%、 76.83%, Hosmer-Lemeshow 拟合优度检验表明预测模型具有较好的标定能力( χ2=2.274, P=0.796)。 结论 心力衰竭患者自我护理能力受多个因素的影响,基于这些影响因素构建的预测模型可有效识别高风险患者,改善心力衰竭患者自我护理管理水平。

    Abstract:

    Objective To investigate the current status of self-care ability in heart failure (HF) patients and construct and validate a predictive model of independent influencing factors, providing a theoretical basis for precision nursing interventions. Methods A total of 80 HF patients admitted to Zhengzhou Central Hospital Affiliated to Zhengzhou University from January 2024 to January 2025 were enrolled. Demographic, clinical, and social support data were collected. Self-care ability was assessed using the European heart failure self-care behaviour scale-9 (EHFScB-9). Multivariable Logistic regression was used to identify predictors of inadequate self-care, and a prediction model was constructed and validated. Results Multivariable Logistic regression analysis showed that the number of people living in the household<3 (OR=2.568), sleep apnea (OR=2.077), hospitalization ≥ 2 times in the past 12 months (OR=2.568), negative perception of the disease (OR=2.440), reduced left ventricular ejection fraction (OR=0.151), and taking ≥ 5 types of medication daily (OR=9.152) are independent risk factors for insufficient self-care ability. The Logistic prediction model was formulated as: P=1/{1+e[0.943×( household residents < 3) + 0.731 ×( sleep apnea) +0.675×( number of hospitalizations in the past 12 months ≥ 2 ) + 0.892×( negative perception of illness) -1.929×( reduced left ventricular ejection fraction) +2.214×( number of medications taken-daily ≥ 5) -8.461]}. The AUC of the model for predicting self-care deficiency was 0.827, and the sensitivity and specificity were 85.74% and 76.83% respectively. Hosmer lemeshow goodness of fit test showed that the prediction model had good calibration ability (χ2=2.274, P=0.796). Conclusion Multidimensional deficiencies significantly impair self-care ability in HF patients. The validated prediction model effectively identifies high-risk individuals, enabling targeted interventions to optimize HF management.

    参考文献
    相似文献
    引证文献
引用本文

王园园.心力衰竭患者自我护理能力现状及影响因素预测模型的构建与验证[J].生物医学工程学进展,2025,46(3):376-381

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-24
  • 最后修改日期:2025-04-07
  • 录用日期:2025-04-08
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码