脑梗死后运动功能障碍患者康复期跌倒风险预测模型的构建与验证
作者:
作者单位:

濮阳惠民医院

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省医学科技攻关计划(编号: LHGJ20220806)


Construction and Verification of a Fall Risk Prediction Model During Rehabilitation Period in Patients with Motor Dysfunction After Cerebral Infarction
Author:
Affiliation:

Puyang Huimin Hospital

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 构建脑梗死( CI)后运动功能障碍患者康复期跌倒风险预测模型并进行预测效能验证。 方法 回顾性选取 2023 年 5 月至 2024 年 6 月濮阳惠民医院收治的 CI 后运动功能障碍患者 144 例,将发生跌倒的患者 68 例作为观察组,未发生跌倒的患者 76 例作为对照组,比较两组临床资料,采用 Logistic 回归构建康复期跌倒风险预测模型,采用受试者工作特征( ROC)曲线分析验证该模型的预测效能。 结果 观察组年龄 [( 69.74±3.57)岁 ]、身体质量指数( BMI) [( 30.57±2.57)kg/m2]、身体疼痛患者比例( 30.88%)、有跌倒史患者比例( 22.06%)、抑郁评分 [( 53.83±5.28)分 ]、焦虑评分 [( 51.72±6.24)分 ] 均高于对照组 [ 分别为( 64.26±3.86)岁、( 27.46±2.35) kg/m2、 11.84%、 6.58%、( 46.37±8.73)分、( 45.84±6.82)分 ]( P<0.05);多因素 Logsitc 回归分析结果显示,患者年龄( OR=1.867)、跌倒史( OR=2.582)、抑郁评分( OR=2.246)是跌倒的主要影响因素( P<0.05)。根据 Logistic 回归分析结果构建跌倒风险预测模型: Logit(P)= - 2.472+1.219 X1+1.414 X4 +1.324 X5。 ROC 曲线分析结果显示, CI 后运动功能障碍患者康复期跌倒风险预测模型的曲线下面积( AUC)值为 0.905( 95%CI: 0.878 ~0.936, P<0.05),其敏感度为 92.73%,特异性为 84.25%。 结论 根据 CI 后运动功能障碍患者年龄、跌倒史、抑郁状况建立康复期跌倒风险预测模型,可有效预测患者跌倒风险,为临床干预提供依据。

    Abstract:

    Objective To construct a prediction model for the risk of falls during the rehabilitation period of patients with motor dysfunction after cerebral infarction (CI) and verify its predictive efficacy. Methods A retrospective selection was conducted on 144 patients with post CI motor dysfunction admitted from May 2023 to June 2024 in Puyang Huimin Hospital. 68 patients who experienced falls were divided into an observation group, and 76 patients who did not experience falls were divided into a control group. The clinical data of the two groups were compared, and a logistic regression model was used to construct a fall risk prediction model during the rehabilitation period. The predictive performance of the model was validated by receiver operating characteristic (ROC) analysis. Results The age of the observation group [(69.74±3.57) years old], body mass index(BMI) [(30.57±2.57) kg/m2], proportion of patients with physical pain (30.88%), proportion of patients with a history of falls (22.06%), depression score [(53.83±5.28) points], and anxiety score [(51.72±6.24) points] were higher than those of the control group [(64.26 ±3.86) years old, (27.46±2.35) kg/m2, 11.84%, 6.58%, (46.37 ±8.73) points, (45.84 ±6.82) points] (P<0.05); multivariate Logsitc regression analysis showed that patient age (OR=1.867), history of falls (OR=2.582), and depression score (OR=2.246) were the main influencing factors for falls (P <0.05); The study constructed a fall risk model based on logistic regression analysis results: Logit(P)= -2.472+1.219 X1+1.414 X4+1.324 X5; ROC analysis showed that the area under curve (AUC) value of the fall risk prediction model for patients with after CI motor dysfunction during the rehabilitation period was 0.905 (95% CI: 0.878 ~ 0.936, P<0.05), with a sensitivity of 92.73% and a specificity of 84.25%. Conclusion Establishing a rehabilitation fall risk prediction model based on the age, fall history, and depression status of patients with motor dysfunction after CI can effectively predict the risk of falls in patients and provide a basis for clinical intervention.

    参考文献
    相似文献
    引证文献
引用本文

邢瑞娜.脑梗死后运动功能障碍患者康复期跌倒风险预测模型的构建与验证[J].生物医学工程学进展,2025,46(2):203-208

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-17
  • 最后修改日期:2025-02-17
  • 录用日期:2025-02-17
  • 在线发布日期: 2025-05-26
  • 出版日期:
二维码