改进的 RA-U-Net 模型用于 CT 图像的肝脏肿瘤分割
CSTR:
作者:
作者单位:

1.上海中侨职业技术大学,上海理工大学;2.上海理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Improved RA-U-Net for Liver Tumor Segmentation of CT Images
Author:
Affiliation:

1.Shanghai Zhongqiao Vocational and Technical University;2.University of Shanghai for Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    肝脏 CT 成像是肝脏肿瘤检查的主要影像学手段,肝脏肿瘤的大小、形状、位置等个体差异较大,病灶组织区域的灰度特征复杂,导致肝脏肿瘤图像分割十分困难。基于深度学习的 U-Net 在医学图像分割方面已取得很多进展,因此该研究拟在 U-Net 的基础上,针对肝脏肿瘤分割的特点进行改进,建立一种用于肝脏肿瘤分割的方法。针对肝脏肿瘤分割中存在的问题,在 U-Net 的基础上,引入残差模块和注意力机制对 U-Net 进行改进,在特征学习方面采用组归一化策略对特征图进行通道划分,以提高深层网络的学习能力,提高模型的泛化能力。该研究在 CodaLab 提供的 LiTS2017 肝脏肿瘤图像分割挑战数据集上测试了该分割网络,结果显示 Dice 系数达到 0.773,高于其他图像分割网络,精确值达到 0.983,召回率为 0.637, 结果表明 RA-U-Net 模型分割图像的效果更好,为肝脏肿瘤临床诊断提供了可靠的依据。

    Abstract:

    Liver CT imaging is the main imaging tool for liver tumor examination. Due to the large individual variability of liver tumors in terms of size, shape, and location, and the complexity of grayscale features in the tissue region of the lesion, it is difficult to make image segmentation of liver tumors. U-Net based on deep learning has made a lot of progress in medical image segmentation, so this study intends to establish a method for liver tumor segmentation by improving the characteristics of liver tumor segmentation on the basis of U-Net. Aiming at the problems in liver tumor segmentation, the U-Net segmentation network is improved by introducing the residual module and the attention mechanism, and the group normalization strategy is used to process the feature map along channels for feature learning, so as to improve the learning ability of the network and the generalization ability of the model. In this study, the segmentation network was tested on the LiTS2017 liver tumor image segmentation challenge dataset provided by CodaLab, and the results show that the average Dice coefficient reaches 0.773, which is higher than that of other image segmentation networks, the precision index reaches 0.983, and the recall index is 0.637, which indicates that the RA-UNet network model is more effective in segmenting images and provides a reliable basis for the clinical diagnosis of liver tumors.

    参考文献
    相似文献
    引证文献
引用本文

杜文杰,王远军.改进的 RA-U-Net 模型用于 CT 图像的肝脏肿瘤分割[J].生物医学工程学进展,2025,(5):599-606

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-05
  • 最后修改日期:2025-05-25
  • 录用日期:2025-06-03
  • 在线发布日期: 2025-11-24
  • 出版日期:
文章二维码