基于联邦学习的病理图像计算机辅助诊断研究进展
CSTR:
作者:
作者单位:

1.上海大学通信与信息工程学院;2.上海交通大学医学院附属仁济医院

作者简介:

通讯作者:

中图分类号:

基金项目:

高等学校学科创新引智计划(111 计划, D20031)资助项目。


Research Progress of Federated Learning-Based Computer-Aided Diagnosis for Histopathological Images
Author:
Affiliation:

1.School of Communication and Information Engineering,Shanghai University,Shanghai;2.The Administrative Office,Renji Hospital,Shanghai Jiao Tong University School of Medicine

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    组织病理诊断被认为是临床癌症诊断的金标准。基于深度学习的病理图像计算机辅助诊断( CAD)能帮助病理医生提高诊断的准确性和效率。然而,不同的医院对病理图像的染色存在差异,多种因素会影响由单一医院数据所训练的辅助诊断模型的泛化性。虽然多中心学习可以解决此问题,但由于隐私保护、数据安全等多种原因,不同医院的大量病理图像通常难以被共享以进行模型训练。联邦学习是一种分布式机器学习方法,其通过共享分布在不同中心的局部模型的参数联合训练模型,而不是共享传统多中心学习范式中的本地数据。因此,联邦学习能有效解决上述问题。目前,已有研究开展了基于联邦学习的病理图像 CAD 研究。该文对目前的研究进展进行了综述,首先介绍了基于深度学习的病理图像 CAD 研究, 然后介绍了联邦学习和基于联邦学习的病理图像 CAD 的研究进展,最后进行了总结和展望。

    Abstract:

    Histopathological diagnosis is considered the “gold standard” for clinical cancer diagnosis. The deep learning-based computer-aided diagnosis (CAD) for histopathological images can help pathologists improve diagnostic accuracy and efficiency. However, there are differences in the stained histopathological images among different hospitals, which can subsequently affect the generalization performance of CAD models trained only with samples from one hospital. Although multi-center learning can address this issue, it remains challenging to gather and share a large number of histopathological images from different hospitals for model training due to various factors, such as privacy protection and data security. Federated learning is a distributed machine learning method, which shares the local model parameters across different centers instead of the local data of different centers in the traditional multi-center learning paradigm. Therefore, federated learning can effectively address the aforementioned issue. Currently, there are studies on federated learning-based CAD for histopathological images, which are surveyed in this paper. It first introduces deep learning-based CAD for histopathological images, then presents the content of federated learning and the federated learning-based CAD for histopathological images. Finally, the conclusion and future work are given.

    参考文献
    相似文献
    引证文献
引用本文

丁赛赛,张渊铭,施俊,罗诚祖.基于联邦学习的病理图像计算机辅助诊断研究进展[J].生物医学工程学进展,2025,(5):708-717

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-18
  • 最后修改日期:2024-08-08
  • 录用日期:2024-08-11
  • 在线发布日期: 2025-11-24
  • 出版日期:
文章二维码