基于 T2WI 和 ADC 图像放射组学特征的机器学习模型鉴别早期宫颈癌和慢性宫颈炎
作者:
作者单位:

韶关市妇幼保健院

作者简介:

通讯作者:

中图分类号:

基金项目:


The Value of Machine Learning Models Based on T2WI and ADC Imaging Radiomics Features in Differentiating Early Cervical Cancer from Chronic Cervicitis
Author:
Affiliation:

Shaoguan Maternal and Child Health Hospital

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【摘要】目的 探讨基于 T2WI 和 ADC 图像放射组学特征的机器学习模型在鉴别早期宫颈癌和慢性宫颈炎中的价值。 方法 回顾性分析 2019 年 9 月至 2023 年 2 月韶关市妇幼保健院病理确诊的宫颈病变患者,其中早期宫颈癌患者 34 例(阳性组),慢性宫颈炎患者 46 例(阴性组)。患者被分为一个训练集( 56 例,其中 24 例阳性和 32 例阴性)和一个独立的测试集( 24例,其中 10 例阳性和 14 例阴性)。收集每例患者的 T2WI 和 ADC 图像,通过 3D Slicer 5.4.0 软件和 PyRadiomics 软件模块从宫颈的容积感兴趣区中提取 837 个放射组学特征。采用 3 种数据归一化方法、 2 种数据降维方法、 4 种特征选择方法和 10种机器学习模型分类器。在建模过程中,最优特征参数被设置为 1 ~ 12。对训练集进行 10 倍交叉验证,以确定模型的超参数。采用独立测试集的 AUC 评价模型性能。 结果 总共建立了 2880 个机器学习模型,其中 Mean_PCC_RFE_5_SVM 模型的预测性能最佳。 结论 基于T2WI和ADC图像放射组学特征的机器学习模型具有区分早期宫颈癌和慢性宫颈炎的应用价值,与其他机器学习模型相比,支持向量机具有更高的诊断效率。

    Abstract:

    【Abstract】 Objective To explore the value of machine learning models based on T2WI and ADC imaging radiomics features in differentiating early cervical cancer from chronic cervicitis. Methods A retrospective analysis was conducted on 80 patients with pathologically confirmed cervical lesions in Shaoguan Maternal and Child Health Hospital from September 2019 to February 2023, including 34 with early cervical cancer(positive group) and 46 with chronic cervicitis(negative group). The patients were split into a training set (56 cases: 24 positive and 32 negative), and an independent test set (24 cases: 10 positive and 14 negative). T2WI and ADC images of each patient were obtained, and a total of 837 radiomics features were extracted from cervical VOIs by 3D slicer software and the PyRadiomics software module. Three data-normalization methods, two dimensionality-reduction methods , four feature selection methods and ten machine learning methods were used. The optimal number of features in the modeling process was set to 1 to 12. Ten-fold cross-validation was performed with the training data set to determine the model hyperparameters. Model performance was evaluated by AUC with the independent test set. Results A total of 2880 machine learning models were established; of these, Mean_PCC_RFE_5_SVM had the best performance. Conclusions Machine learning models based on T2WI and ADC imaging radiomics features have significant value in differentiating early cervical cancer from chronic cervicitis. Compared with other machine learning models, the support vector machine models had higher diagnostic efficiency.

    参考文献
    相似文献
    引证文献
引用本文

杨守义,邓义.基于 T2WI 和 ADC 图像放射组学特征的机器学习模型鉴别早期宫颈癌和慢性宫颈炎[J].生物医学工程学进展,2025,(1):25-30

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-23
  • 最后修改日期:2024-04-23
  • 录用日期:2024-06-19
  • 在线发布日期: 2025-03-26
  • 出版日期:
二维码