眼底荧光造影无灌注区智能分割
作者:
作者单位:

1.北京石油化工学院 人工智能研究院;2.中日友好医院

作者简介:

通讯作者:

中图分类号:

基金项目:

北京市教育委员会资金支持,项目编号 22019821001;北京石油化工学院人工智能青年科学家攀登计划资助项目,项目编号 AAI-2021-004; 北京石油化工学院致远科研基金,项目编号 2023015。


Intelligent Segmentation of Non-Perfusion Areas in Fundus Fluorescein Angiography
Author:
Affiliation:

1.Academy of Artificial Intelligence,Beijing Institute of Petrochemical Technology;2.China-Japan FriendshipSHospital

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【摘要】 眼底荧光造影图像中毛细血管无灌注区的识别对于糖尿病性视网膜病变的早期诊断和治疗至关重要。由于受到视网膜渗出液等的干扰,传统 LadderNet 模型的特征提取和图像分割不够准确。为了解决这一问题,实现眼底血管无灌注区的智能分割,节约医生阅片的人工成本,该文提出了基于 Enhance LadderNet 的眼底荧光造影智能分割模型。首先,用 Vgg模块取代传统 LadderNet 模型中的卷积模块,使卷积层之间通过参数共享和稀疏交互的方式增强特征提取能力,提高网络泛化能力和效率。其次,在模型中加入注意力机制,使模型更加聚焦于图像中重要的特征和区域,减少模型的过度拟合,提高特征的表达能力。最后,结合合作医院的真实数据进行消融实验,并将 Enhance LadderNet 模型与传统LadderNet 模型及其他模型进行比较。实验表明,该文提出的毛细血管无灌注区分割模型,在分割准确度上提升效果显著。

    Abstract:

    【Abstract】 The recognition of capillary non-perfusion areas in fundus fluorescein angiography(FFA) images is crucial for the early diagnosis and treatment of diabetic retinopathy. However, due to interference from retinal exudates, the accurate detection of CNP in fundus fluorography images using the traditional LadderNet model is limited. In order to address these issues and achieve intelligent non-perfusion areas segmentation in fundus vessels while reducing the labor cost associated with manual interpretation by doctors, an intelligent segmentation model for fundus fluorography based on Enhance LadderNet is proposed. Firstly, the convolution module in the traditional LadderNet is replaced by the Vgg module. This modification enhances the feature extraction ability of the convolution layer through parameter sharing and sparse interaction between convolutional layers, thereby improving network generalization and efficiency. Secondly, an attention mechanism is incorporated into the intelligent model. This mechanism enables the model to focus more on important features and regions within the images, reducing overfitting and enhancing feature expression. Finally, ablation experiments using real data from a collaborative hospital is conducted, to evaluate the performance of the Enhanced LadderNet model compared to the traditional LadderNet and other models. The results of these experiments demonstrate the proposed model significantly improvs the accuracy of segmenting capillary non-perfusin areas.

    参考文献
    相似文献
    引证文献
引用本文

白君华,巩迪,陈宜,曹起源,刘强,杨强.眼底荧光造影无灌注区智能分割[J].生物医学工程学进展,2025,(1):9-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-26
  • 最后修改日期:2024-05-06
  • 录用日期:2024-05-15
  • 在线发布日期: 2025-03-26
  • 出版日期:
二维码