基于双随机森林的发热待查智能诊断方法
DOI:
作者:
作者单位:

1.西安电子科技大学;2.空军军医大学第二附属医院;3.西安交通大学第一附属医院;4.Duke University Health System

作者简介:

通讯作者:

中图分类号:

基金项目:

空军军医大学第二附属医院前沿交叉研究项目(2021QYJC-005)


An Intelligent Diagnosis Method for FUO Based on Bi-random Forest
Author:
Affiliation:

1.Xidian University;2.The Second Affiliated Hospital of Air Force Medical University;3.The First Affiliated Hospital of Xi’an Jiaotong University;4.Duke University Health System

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在机器学习预测模型中,不平衡数据集会降低少数类的预测准确性。针对发热待查数据集的不平衡特性,该文提出了一种基于K-Means 聚类欠采样的双随机森林病因预测方法。首先通过K-Means 聚类欠采样构建一个平衡数据集,并在此基础上创建一个基于CART 投票机制的随机森林预测模型。然后对初始数据集用同样的方法创建一个随机森林预测模型。最后将两个随机森林预测模型联合,使用两者的CART 一起投票预测。该文提出的方法增加了CART 的数量,在保持原有数据集特性的同时,提高了少数类的投票权重。在发热待查数据集上的实验表明,该文所提方法不仅改善了少数类的预测性能,对其他类别的预测性能也有一定程度的提升。

    Abstract:

    In machine learning prediction models, imbalanced datasets reduce the accuracy of minority class predictions. A bi-random forest etiology prediction method based on K-Means clustering undersampling is proposed to address the imbalanced characteristics of the fever of unknown origin (FUO) dataset. Firstly, a balanced dataset is constructed through K-Means clustering undersampling, and a random forest prediction model based on the CART voting mechanism is created on this basis. Then, a random forest prediction model is also created using the same method for the initial dataset. Finally, two random forest prediction models are combined and their CART are used to vote together for prediction. The proposed method increases the number of CART, and enhances the voting weights of minority class while maintaining the characteristics of the original dataset. Experiments on FUO dataset show that the proposed method not only improves the prediction performance for minority class, but also improves the prediction performance for the other classes to a certain extent.

    参考文献
    相似文献
    引证文献
引用本文

杜建超,丁俊瑶,赵梦楠,连建奇,陈天艳,Yuan WU,周云,石磊.基于双随机森林的发热待查智能诊断方法[J].生物医学工程学进展,2024,(3):197-205

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-11
  • 最后修改日期:2024-06-21
  • 录用日期:2024-08-01
  • 在线发布日期: 2024-10-15
  • 出版日期:
二维码