基于时频结合空间注意力网络的3D骨架人体运动预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61971290)


Time-Frequency Spatial Attention Network for 3D Skeleton Human Motion Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以往基于时域和频域的图卷积网络模型在三维人体运动预测上显示出令人印象深刻的结果。然而,时域和频域是同一个人体动作信号在不同域的表现,该文同时结合人体位姿在时域和频域的序列进行编码,并在两个通道上对不同表现形式的关节信息通过注意力机制强化人体骨骼各节点之间的相互依赖关系。最后通过基于图的门控循环单元(G-GRU)对编码信息进行递归解码,输出预测的运动序列。该文在 Human 3.6M 和 CMU-MoCap 数据集上测试了所提的模型,实验证明,该文所提的模型能获得比以往模型更准确的预测结果。

    Abstract:

    Previous works on graph convolutional networks based on temporal recurrent networks and frequency domains has shown impressive results in three-dimensional human motion prediction. However, the time domain and frequency domain are the manifestations of the same human action signal in different domains, and this paper encodes the observed movement sequence of the human body in the time and frequency domains in combination with the human posture in the time and frequency domains, and strengthens the interdependence between nodes of human bones through the attention mechanism of joint information of different manifestations in the two channels. Finally, the gated loop unit (G-GRU) based on the graph is used to recursively decode the encoded information and output the predicted motion sequence. We tested our model on the Human 3.6M and CMU-MoCap datasets, and experiments proved that our model can obtain more accurate predictions than previous methods.

    参考文献
    相似文献
    引证文献
引用本文

张禄钧,何志权.基于时频结合空间注意力网络的3D骨架人体运动预测[J].生物医学工程学进展,2023,(4):391-397

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-17
  • 最后修改日期:2023-11-19
  • 录用日期:2023-11-24
  • 在线发布日期: 2024-01-13
  • 出版日期:
二维码