基于雾密度智能感知的腹腔镜图像去烟雾算法研究
作者:
作者单位:

1.上海理工大学健康科学与工程学院;2.上海交通大学医学院附属新华医院普外科;3.无锡艾视益医疗科技有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Laparoscopic Image Defogging Method Based on Intelligent Perception of Fog Density
Author:
Affiliation:

1.School of Health Science and Engineering,University of Shanghai for Science and Technology;2.Department of General Surgery,Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine;3.Isee Medical Technology Co

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 在腹腔镜手术过程中,术野内会产生影响医生观察的烟和雾。相比特殊去烟或去雾装置,图像处理算法可同时实现腹腔镜图像的去烟雾操作,成本低、操作简单、易于使用。但是,目前腹腔镜去烟雾算法还存在处理后易发生色偏、细节不突出、亮度过低等问题。方法 针对腹腔镜图像去雾存在的问题,该文提出了一种基于雾密度智能感知的腹腔镜图像去烟雾算法,包含透射率智能感知的图像增强模块和光照分量感知的图像增强模块。透射率智能感知的图像增强模块通过感知图像的具体像素雾含量进行去雾,可优化去雾效果。光照分量感知的图像增强模块根据图像不同像素区域的光照进行图像亮度增强,使图像在避免过增强的情况下更好地提升图像亮度。结果 分别选取4K分辨率和1080P分辨率不同场景下的100张图像进行验证,无参考雾密度评价指标显示,提出的智能感知算法相比3种对照算法,雾密度分别下降了67.3%、68.1%和14.2%。结论 智能感知算法有效改善了腹腔镜图像去烟雾增强效果。

    Abstract:

    Objective During laparoscopic surgery, smoke and fog can affect the doctor""s observation in the operative field. Compared to special smoke or fog removal devices, image processing algorithms can simultaneously achieve desmoking and defogging for laparoscopic images, with low cost, simple operation, and ease of use. However, the current laparoscopic defogging algorithm still has problems such as color cast, lack of details, and low brightness after processing. Method In response to the problems of laparoscopic image de-fogging, this paper proposes a laparoscopic image de-fogging algorithm based on intelligent perception of fog density, which includes an image enhancement module based on intelligent perception of transmittance and an image enhancement module based on perception of illumination components. The image enhancement module with intelligent transmittance sensing can optimize the defogging effect by sensing the specific pixel fog content of the image. The image enhancement module with light component perception enhances the brightness of the image based on the light in different pixel regions of the image, allowing the image to improve its brightness without over-enhancing. Results 100 images with different scenes at 4K resolution and 1080P resolution were selected for verification. The non-reference fog density evaluation index showed that the proposed intelligent perception algorithm reduced the fog density by 67.3%, 68.1%, and 14.2% compared to the three control algorithms, respectively. Conclusion The intelligent perception algorithm effectively improves the enhancement effect of laparoscopic image defogging.

    参考文献
    相似文献
    引证文献
引用本文

尹梓名,张震宇,束翌俊,张向新.基于雾密度智能感知的腹腔镜图像去烟雾算法研究[J].生物医学工程学进展,2023,(3):235-243

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-08
  • 最后修改日期:2023-04-17
  • 录用日期:2023-04-17
  • 在线发布日期: 2023-10-07
  • 出版日期:
二维码